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Abstract— State estimation for soft continuum robots is chal-
lenging due to their infinite-dimensional states (poses, strains,
velocities) resulting from continuous deformability, while con-
ventional sensors provide only discrete data. A recent method,
called a boundary observer, uses Cosserat rod theory to estimate
all robot states by measuring only tip velocity. In this work, we
propose a novel boundary observer that instead measures the
internal wrench at the robot’s base, leveraging the duality be-
tween velocity and internal wrench. Both observers are inspired
by energy dissipation, but the base-based approach offers a key
advantage: it uses only a 6-axis force/torque sensor at the base,
avoiding the need for external sensing systems. Combining tip-
and base-based methods further enhances energy dissipation,
speeds up convergence, and improves estimation accuracy. We
validate the proposed algorithms in experiments where all
boundary observers converge to the ground truth within 3
seconds, even with large initial deviations, and they recover
from unknown disturbances while effectively tracking high-
frequency vibrations.

I. INTRODUCTION

Accurate state estimation is essential for effective con-
trol and operation of robots. For continuum robots, this is
particularly challenging because their states are inherently
infinite-dimensional functions due to the robots’ continuous
deformability. As traditional sensing techniques only provide
discrete measurements, one common strategy is to combine
with mathematical models to infer unmeasured continuous
states. Most existing research has focused on quasi-static
shape estimation, ranging from fitting parameterized spatial
curves [1], [2] to applying Kalman filters based on Kirchhoff
rod statics [3] and employing Gaussian process regression for
Cosserat rod statics [4]. Shape estimation, however, is unsuit-
able for real-time dynamic control. Consequently, there is
a shift towards incorporating dynamic models. Cosserat rod
theory is perhaps the most widely adopted [5]-[7]. However,
it leads to nonlinear partial differential equations (PDEs),
making state estimation particularly challenging. Researchers
have developed various discretized or reduced-order models,
such as finite difference [8], piecewise constant curvature
[9], piecewise constant strain [10], and smooth strain param-
eterizations [11]. Using these discretized or reduced-order
models, techniques like extended Kalman filters [12], [13],
passivity-based observers [8], and state-dependent Kalman
filters [14] have been designed. The common limitation is
that they often require a large number of measurements and
cannot guarantee the convergence of estimates. This raises
a fundamental question: Are the infinite-dimensional robot
states observable based on current sensing techniques?
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Fig. 1. Overview. Our algorithm estimates dynamic robot states by
integrating the Cosserat rod model with tendon forces and an injected
correction based on the measured internal wrench at the robot’s base.
Left: experimental setup. Middle: flowchart of our algorithm. Right: state
estimates converge to the ground truth.

Recently, a dynamic state estimation method called a
boundary observer was introduced [15], [16], which employs
Cosserat rod theory to recover all infinite-dimensional states
by measuring only the velocity twist at the robot’s tip. We
refer to this method as the tip observer. In this work, we
propose a dual boundary observer—the base observer—that
also reconstructs the full dynamic state but instead relies
on measurements of the internal wrench at the robot’s
base. This design leverages the duality between velocity and
internal wrench, with both observers grounded in energy
dissipation principles. Despite their mathematical duality, the
base observer offers a practical advantage: it requires only
a 6-axis force/torque (F/T) sensor at the base, making it
suited for small-scale continuum robots and for applications
such as inspection in outdoor or constrained environments.
Moreover, combining tip- and base-based correction tech-
niques enhances energy dissipation, speeds up convergence,
and improves estimation accuracy—making the integrated
approach especially valuable when both types of sensing
are available. Experimental validation using a tendon-driven
continuum robot shows that all boundary observers converge
to the ground truth within 3 seconds, even from significantly
deviated initial conditions. They also recover from unknown
disturbances and accurately track high-frequency vibrations.
Furthermore, combining the correction mechanisms leads
to faster convergence and higher accuracy. Implemented in
MATLAB and executed at 30 Hz, the algorithm achieves a
real-time factor of 1.52 £ 0.33, confirming its suitability for
real-time control applications. An overview of the experi-
mental results is shown in Figure 1.



II. DISSIPATION-BASED BOUNDARY OBSERVERS

Our state estimation algorithm is based on the Cosserat rod
theory [6], [7]. The robot states are continuous functions of
the arc parameter s € [0, 1] and time ¢. Let g(s,t) € SE(3)
be the field of poses (transformation matrices) of the robot.
Let n(s,t),&(s,t), d(s,t),9(s,t) € RS be the fields of
velocity twists, strain twists, internal wrenches, and external
wrenches, respectively. The governing equations of robot
kinematics and dynamics are given by:

& = s + aden, (1)
My —adl My = ¢, — ad ¢ + ¢, 2)
with supplementary equations to construct g and ¢:
g9s = 9&", 3)
(b = K(§ - go) - ¢act7 “4)

where (-); and (-)s are partial derivatives, M(s), K(s) €
R6%6 are the cross-sectional inertia and stiffness matrices,
&(s) € RO is the reference strain field, and ¢u(s,t)
is the actuation wrench determined by the applied tendon
forces 7;(t) [17]. Finally, we have the following boundary
conditions at s = 0 (the base) and s = 1 (the tip):

9(0,2) = go(t),n(0,t) = no(t), (1,t) = 1(t), (5)

where go(t) is the base pose, 19(t) is the base velocity twist,
and 11 (t) is the wrench applied at the tip.

Problem Statement: Assume the coefficients M (s) and
K(s), the boundary conditions go(t), no(t), and (), the
external wrench (s, t), and the tendon inputs 7;(¢) are
known. Assume we can measure the internal wrench at
the base ¢(t). The objective is to estimate the continuum
robot states g(s,t), £(s,t), n(s,t), and ¢(s,t). This setup is
advantageous as it eliminates the need for external sensing
systems like motion capture cameras.

Our base observer algorithm is inspired by the principle
of energy dissipation. The core equations consist of (1)-(4),
which essentially mirror those of the Cosserat rod theory.
The novelty lies in the modified boundary conditions:

9(0,t) = go(t), (6)
n(0,) = mo(t) + To(6(0,1) = (1)), ™)
o(1,t) = (1), (®)
where ¢(0,¢) is the current estimate of the base internal

wrench, and ¢(t) is the measured internal wrench from a
6-axis F/T sensor. Numerically solving the base observer
yields all state estimates. This base observer contrasts with
the tip observer in [15], [16], differing only in the boundary
conditions. The convergence can be proven using a similar
Lyapunov-based methodology in [16], which is essentially
a duality property. For completeness, we also present the
boundary conditions of the tip observer:

g(O,f) = gO(t)7 9
n(0,t) = no(t), (10
¢(17t) =¢1(t) _Fl(n(Lt) _’F](t))a (11)

where 7)(1,¢) is the current estimate of the tip velocity and
7j(t) is the measured tip velocity.

The added terms T'o(¢(0,¢) — ¢(t)) and —T'y(n(1,t) —
7(t)) are referred to as boundary correction terms. The first
acts as a virtual swinging base, and the second as a virtual
damping wrench at the tip. It is important to note that these
correction terms dissipate the energy associated with the
estimation errors rather than the actual robot system. By
subtracting the equations for the estimated states from those
of the actual robot, one can see that the correction terms act
as dissipative terms in the error dynamics.

In fact, the tip and base observers are “additive”, enabling
their combined use to improve convergence speed, although
this comes at the cost of requiring more sensors. The
most general boundary conditions of a boundary observer,
combining both base and tip corrections, are given by:

g(oa t) = gO(t)7 (12)
n(0,t) = no(t) + Lo (4(0, 1) — ¢(1)), (13)
6(11) = ¥a(t) = Tpllog (57 9(LO)] " |

—Tn(n(1,t) —q(t)),

where ¢(1,t) denotes the estimated tip pose, g(t) is the
measured tip pose, and I'p, I'p are positive-definite gain
matrices. The subscripts “P”” and “D” reflect their roles akin
to proportional-derivative control. Depending on the presence
of the P term, we refer to the corresponding observer as
the tip D observer or tip PD observer. These observers
offer several key advantages: (1) they can be initialized
from any reasonable configuration, with the correction terms
ensuring convergence of the estimation errors; and (2) they
are compatible with any numerical solver for Cosserat rod
models, since the observers remain governed by the same
equations. This latter property is particularly beneficial, as
the growing popularity of Cosserat rod theory continues to
drive the development of efficient solvers, all of which can
be readily used to implement the boundary observers.

As model-based algorithms, the accuracy of these ob-
servers relies on the fidelity of the underlying model. In the
presence of modeling errors, the observers remain stable,
though steady-state estimation errors may arise. However,
the proportional term helps mitigate these errors by intro-
ducing corrective inputs, a property that will be demonstrated
through experimental validation.

III. EXPERIMENTAL VALIDATION

In this section, we describe the physical continuum robot
and the experimental procedures used to evaluate the perfor-
mance of the proposed boundary observers.

1) Experimental Setup: The robot features a spring steel
rod backbone with nine equally spaced disks. A 6-axis
force/torque sensor is mounted at the base to measure internal
wrenches in real time. Actuation is achieved using two
parallel tendons, each connected to a force gauge at the base
to monitor tendon tension. To establish a ground truth for
the robot’s state, markers were placed on five equally spaced
disks and tracked using a motion capture system. The robot
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Fig. 2. (a) Experimental Setup: The robot was actuated by two parallel tendons. Tracking markers were placed on five spacer disks to measure their
position and orientation, serving as ground truth. A 6-axis F/T sensor was mounted at the robot’s base to measure its real-time internal wrenches, while
a force gauge was attached to each tendon to record its real-time tension. (b) Experimental Snapshots: The two tendons were pulled to generate spatial
motions. At t = 13.5 and 34 seconds, external perturbations were applied to the robot to induce high-frequency free vibrations. (c) Estimated Configuration
for Corresponding Snapshots: The black dots represent the ground truth positions of the robot’s backbone, while the blue curve denotes the estimated
backbone position obtained using the base observer algorithm. At ¢ = 0, the algorithm was deliberately initialized when the robot was already in motion,
resulting in a large initial estimation error. However, the estimated positions quickly converged to the ground truth and closely tracked the robot’s actual

motion. Upon perturbation, the estimation temporarily deviated from the ground truth but rapidly converged again.

was initially at rest in a vertically downward configuration.
To induce diverse spatial motions, we alternated pulling the
two tendons. External perturbations were introduced at ¢t =
13.5 and 34 seconds by stirring the robot’s tip with a stick,
generating free vibrations. These conditions were designed
to test the observers’ ability to recover from unknown dis-
turbances and accurately estimate dynamic states during fast
motions, scenarios that violate the quasi-static assumption. A
sequence of experimental snapshots is presented in Fig. 2 (b).

2) Experimental Results: In Fig.2, we show the ground
truth backbone positions alongside the estimated configu-
rations obtained using the base observer across six exper-
imental snapshots. Due to space constraints, Fig.3 presents
only the position and linear velocity trajectories at the three-
quarter point of the robot, comparing ground truth and
observer estimates. As shown, all observers converged within
2 seconds after initialization, though with varying steady-
state errors. The tip PD and combined observers achieved
smaller steady-state errors, thanks to the proportional cor-
rection term. Initial velocity overshoots, primarily caused
by large initialization errors, can be reduced by initializing
the observers closer to the true robot state. At ¢ = 13.5
and 34 seconds, the base and tip D observers temporarily
deviated due to external perturbations but recovered within
1 second and accurately captured high-frequency vibrations.
In contrast, the tip PD and combined observers maintained
better tracking performance even during disturbances. These
results highlight the strengths of our dynamic state esti-
mation framework over quasi-static approaches. Among all
observers, the combined observer consistently achieved the
fastest convergence and least oscillation, benefiting from the
synergy of multiple dissipation-based correction terms.

Finally, all experiments were performed on a 64-bit Win-
dows machine with a 13th Gen Intel® Core™ i9-13900
processor at 2.00 GHz and 64.0 GiB of RAM. With a dis-
cretization rate of 30 Hz and 29 spatial points, the algorithm
achieved a real-time factor of 1.52 &+ (0.33, demonstrating its
feasibility for real-time feedback control.

IV. CONCLUSION

We reported a dynamic state estimation algorithm for con-
tinuum robots. It was able to recover all infinite-dimensional
robot states by measuring the internal wrench at the robot’s
base using embedded F/T sensors. By combining dual bound-
ary corrections, the observers achieved faster convergence
and improved accuracy in the presence of perturbations and
modeling errors. These conclusions were validated using
experimental data from a tendon-driven continuum robot.
Our future work is to use the algorithms for feedback control.
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